Orientations of Simplices Determined by Orderings on the Coordinates of their Vertices

Kevin Sol Joint work with Emeric Gioan and Gérard Subsol

LIRMM - Montpellier France

CCCG 2011

Research supported by the OMSMO (Oriented Matroids for Shape MOdeling) Project and the TEOMATRO Grant

ANR-10-BLAN-0207

Kevin Sol

Orientations of Simplices Determined by Orderings on their Vertices

Study of the 3D shape of anatomical structures.

Applications:

Anatomy, anthropology, paleontology, medicine

Kevin Sol

Orientations of Simplices Determined by Orderings on their Vertices

• The expert defines 3D landmark points based on anatomical knowledge

Orientations of Simplices Determined by Orderings on their Vertices

• The expert defines 3D landmark points based on anatomical knowledge

Orientations of Simplices Determined by Orderings on their Vertices

- Motivation
 - The expert defines 3D landmark points based on anatomical knowledge

• The expert defines 3D landmark points based on anatomical knowledge

• We encode the shape of the anatomical structure with the orientation of all quadruplets of points.

• The expert defines 3D landmark points based on anatomical knowledge

- We encode the shape of the anatomical structure with the orientation of all quadruplets of points.
- \implies combinatorial study of 3D anatomical structures

Kevin Sol

Orientations of Simplices Determined by Orderings on their Vertices

But for an anatomical structure, we can define ordering relations between the coordinates of the points;

But for an anatomical structure, we can define ordering relations between the coordinates of the points;

	-	•
-	-	~ 10
	•	$\mathcal{A}^{(1)}$

View from the right

But for an anatomical structure, we can define ordering relations between the coordinates of the points; Some points are to the left of others

	•		
•	•	•	•
•	•	-	

View from the right

But for an anatomical structure, we can define ordering relations between the coordinates of the points; Some points are on top of others

-		
		-
-	•	

View from the right

But for an anatomical structure, we can define ordering relations between the coordinates of the points; Some points are in front of others

-		
-		
-	-	

View from the right

Landmark point positions change due to morphological variability or differences...

Skull k

Landmark point positions change due to morphological variability or differences...

Landmark point positions change due to morphological variability or differences...

Skull 1

but they still respect the orderings.

Question

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

Kevin Sol

Definition

The orientation of a simplex ($\in \{+, -, 0\}$):

Definition

Definition

Definition

The orientation of a simplex ($\in \{+, -, 0\}$): Quadruplet (A, B, C, D):

Definition

The orientation of a simplex $(\in \{+, -, 0\})$: Quadruplet (A, B, C, D):

Definition

The orientation of a simplex $(\in \{+, -, 0\})$: Quadruplet (A, B, C, D):

Orientation of the triplet (B, C, D)

Definition

Definition

The orientation of a simplex ($\in \{+, -, 0\}$):

$Orientations \ of \ simplices = chirotopes \ of \ an \ oriented \ matroid$

Kevin Sol

Orientations of Simplices Determined by Orderings on their Vertices

Formalism

Notations

• M: a formal matrix

$$M = \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_{1,1} & x_{2,1} & \dots & x_{n,1} \\ x_{1,2} & x_{2,2} & \dots & x_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1,n-1} & x_{2,n-1} & \dots & x_{n,n-1} \end{pmatrix}$$

where $x_{j,i}$ is a formal variable

Introduction	Formalism	Linear Orderings	Sign of det(M)	Characterizations in 2D $/$ 3D	Conclusion
Formalism					
Nota	ations				
۲	• <i>M</i> : a formal matrix				
۲	• \mathcal{P} : a set of <i>n</i> points P_j in a space of dimension $n-1$				

Notations

- *M*: a formal matrix
- \mathcal{P} : a set of *n* points P_j in a space of dimension n-1
- Assigns M with $P_{j,i}$ (*i*-th coordinate of the point P_j)

$$M_{\mathcal{P}} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ P_{1,1} & P_{2,1} & \dots & P_{n,1} \\ P_{1,2} & P_{2,2} & \dots & P_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ P_{1,n-1} & P_{2,n-1} & \dots & P_{n,n-1} \end{pmatrix}$$

Orientation of $\mathcal{P} = \text{sign of } \det(M_{\mathcal{P}})$

Formalism

Notations

- M: a formal matrix
- \mathcal{P} : a set of *n* points P_j in a space of dimension n-1
- the real matrix $M_{\mathcal{P}}$

Orientation of $\mathcal{P} = \text{sign of } \det(M_{\mathcal{P}})$

Remark

Orientation of $\mathcal{P}~=~0~\iff~\mathcal{P}$ is contained in an hyperplane

Configuration of orderings

Formali<u>sm</u>

Definition

We call configuration of n-1 orderings on \mathcal{E} , a set \mathcal{C} of n-1 orderings on a set \mathcal{E} of size n.

Configuration of orderings

Formalism

Definition

We call configuration of n-1 orderings on \mathcal{E} , a set \mathcal{C} of n-1 orderings on a set \mathcal{E} of size n.

Example: a configuration C of 3 orderings in $\{A, B, C, D\}$

$$A <_{x} B <_{x} C <_{x} D$$
$$B <_{y} D <_{y} C \text{ and } B <_{y} A <_{y} C$$
$$D <_{z} A$$

Example: a configuration C of 3 orderings in $\{A, B, C, D\}$

$$A <_{x} B <_{x} C <_{x} D$$
$$B <_{y} D <_{y} C \text{ and } B <_{y} A <_{y} C$$
$$D <_{z} A$$

Example: a configuration C of 3 orderings in $\{A, B, C, D\}$

$$\begin{array}{c} A <_x B <_x C <_x D \\ B <_y D <_y C \quad \text{and} \quad B <_y A <_y C \\ D <_z A \end{array}$$

DefinitionA set of points \mathcal{P} satisfies \mathcal{C} if $\forall i \in \{1, \dots, n-1\}, \forall e, f \in \mathcal{E}, e <_i f \Longrightarrow x_{e,i} < x_{f,i}$

Example: a configuration C of 3 orderings in $\{A, B, C, D\}$

$$A <_{x} B <_{x} C <_{x} D$$
$$B <_{y} D <_{y} C \text{ and } B <_{y} A <_{y} C$$
$$D <_{z} A$$

Definition

A set of points \mathcal{P} satisfies \mathcal{C} if $\forall i \in \{1, \dots, n-1\}, \forall e, f \in \mathcal{E}, \qquad e <_i f \Longrightarrow x_{e,i} < x_{f,i}$

 $\mathcal{P} = \{P_1(0,4,3); P_2(2,2,3); P_3(3,5,0); P_4(5,3,1)\}$ satisfies \mathcal{C} :

$$\begin{array}{c} x(P_1) < x(P_2) < x(P_3) < x(P_4) \\ y(P_2) < y(P_4) < y(P_3) \quad \text{and} \quad y(P_2) < y(P_1) < y(P_3) \\ z(P_4) < z(P_1) \end{array}$$

Formalism

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

Examples in 2D:

$$A <_{x} B <_{x} C$$
$$B <_{y} C <_{y} A$$

 $\begin{array}{l} A <_x B <_x C \\ A <_y B <_y C \end{array}$

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

Examples in 2D:

 $x_A = x_B$

 $A <_{x} B <_{x} C$ $A <_{y} B <_{y} C$

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

 $A <_{x} B <_{x} C$ $A <_{y} B <_{y} C$

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

 $A <_{x} B <_{x} C$ $A <_{y} B <_{y} C$

 $A <_{x} B <_{x} C$ $A <_{y} B <_{y} C$

Fixed configuration

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

Examples in 2D:

fixed configuration

Kevin Sol

Orientations of Simplices Determined by Orderings on their Vertices

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

Examples in 2D:

fixed configuration

Definition

 ${\cal C}$ is fixed if for all ${\cal P}$ satisfying ${\cal C},\,{\cal P}$ has always the same orientation.

Examples in 2D:

fixed configuration

non-fixed configuration

Two configurations of n-1 orderings are *equivalent* if they are equal up to a relabelling of \mathcal{E} , a permutation of orderings, and reversion(s) of orderings.

Two configurations of n-1 orderings are *equivalent* if they are equal up to a relabelling of \mathcal{E} , a permutation of orderings, and reversion(s) of orderings.

$$A <_{x} B <_{x} C$$
$$B <_{y} C <_{y} A$$

Two configurations of n-1 orderings are *equivalent* if they are equal up to a relabelling of \mathcal{E} , a permutation of orderings, and reversion(s) of orderings.

Two configurations of n-1 orderings are *equivalent* if they are equal up to a relabelling of \mathcal{E} , a permutation of orderings, and reversion(s) of orderings.

Two configurations of n-1 orderings are *equivalent* if they are equal up to a relabelling of \mathcal{E} , a permutation of orderings, and reversion(s) of orderings.

Definition

The sign of det(M) w.r.t. C, denoted $\sigma_C(det(M))$, belongs to $\{[+], [-], [\pm]\}$:

Definition

The sign of det(M) w.r.t. C, denoted $\sigma_{\mathcal{C}}(det(M))$, belongs to $\{\pm, -, \pm\}$:

if C is fixed: for all P satisfying C, det(M_P) has the same sign, either + or -.

Definition

The sign of det(M) w.r.t. C, denoted $\sigma_{\mathcal{C}}(det(M))$, belongs to $\{\pm, -, \pm\}$:

if C is fixed: for all P satisfying C, det(M_P) has the same sign, either + or -.

 $\implies \sigma_{\mathcal{C}}(det(M)) \in \{+, -\}.$

Definition

The sign of det(M) w.r.t. C, denoted $\sigma_{\mathcal{C}}(det(M))$, belongs to $\{\pm, -, \pm\}$:

if C is fixed: for all P satisfying C, det(M_P) has the same sign, either + or -.

 $\implies \sigma_{\mathcal{C}}(det(M)) \in \{+, -\}.$

• if C is non-fixed: there exist \mathcal{P}_1 and \mathcal{P}_2 satisfying C such that $det(M_{\mathcal{P}_1}) < 0$ and $det(M_{\mathcal{P}_2}) > 0$.

Definition

The sign of det(M) w.r.t. C, denoted $\sigma_{\mathcal{C}}(det(M))$, belongs to $\{\pm, -, \pm\}$:

if C is fixed: for all P satisfying C, det(M_P) has the same sign, either + or -.

 $\implies \sigma_{\mathcal{C}}(det(M)) \in \{+, -\}.$

• if C is non-fixed: there exist \mathcal{P}_1 and \mathcal{P}_2 satisfying C such that $det(M_{\mathcal{P}_1}) < 0$ and $det(M_{\mathcal{P}_2}) > 0$. $\implies \sigma_{\mathcal{C}}(det(M)) = \pm$.

The problem (rewording)

Question (reminder)

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

The problem (rewording)

Question (reminder)

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

The problem (rewording)

Determine the fixity of the configurations (determine if they are fixed or non-fixed).

The problem (rewording)

Formalism

Question (reminder)

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

The problem (rewording)

Determine the fixity of the configurations (determine if they are fixed or non-fixed).

The problem (rewording 2)

Does there exist \mathcal{P} satisfying \mathcal{C} such that $det(M_{\mathcal{P}}) = 0$?

A linear extension of a configuration C is a configuration where each ordering of C is replaced by one of its linear extensions.

Linear extensions

Definition

A linear extension of a configuration C is a configuration where each ordering of C is replaced by one of its linear extensions.

Example:

$$C$$

$$A <_x B <_x C <_x D$$

$$B <_y D <_y C \text{ and } B <_y A <_y C$$

$$D <_z A$$
a linear extension of C

 $A <_x B <_x C <_x D$ $B <_y D <_y A <_y C$ $D <_z A <_z C <_z B$

Proposition 1

 \mathcal{C} is non-fixed $\iff \exists$ a non-fixed linear extension of \mathcal{C} .

Proposition 1

 \mathcal{C} is non-fixed $\iff \exists$ a non-fixed linear extension of \mathcal{C} .

Proposition 1 (rewording)

 \mathcal{C} is fixed \iff all linear extension of \mathcal{C} are fixed.

Proposition 1

 \mathcal{C} is non-fixed $\iff \exists$ a non-fixed linear extension of \mathcal{C} .

Proposition 1 (rewording)

 \mathcal{C} is fixed \iff all linear extension of \mathcal{C} are fixed.

\Longrightarrow We will concentrate only on linear configurations.

Computing $\sigma_{\mathcal{C}}(det(M))$

Definition

When det(M) can be written as " $det(M) = \sum \prod (x_{e,i} - x_{f,i})$ " it is called an expression of det(M)

Computing $\sigma_{\mathcal{C}}(det(M))$

Definition

When det(M) can be written as " $det(M) = \sum \prod (x_{e,i} - x_{f,i})$ " it is called an expression of det(M)

Example:

$$\det(M) = \det \begin{pmatrix} 1 & 1 & 1 \\ x_A & x_B & x_C \\ y_A & y_B & y_C \end{pmatrix}$$

Definition

When det(M) can be written as " $det(M) = \sum \prod (x_{e,i} - x_{f,i})$ " it is called an expression of det(M)

$$det(M) = det\begin{pmatrix} 1 & 1 & 1 \\ x_A & x_B & x_C \\ y_A & y_B & y_C \end{pmatrix}$$
$$= det\begin{pmatrix} 1 & 0 & 0 \\ x_A & x_B - x_A & x_C - y_A \\ y_A & y_B - y_A & y_C - y_A \end{pmatrix}$$

Definition

When det(M) can be written as " $det(M) = \sum \prod (x_{e,i} - x_{f,i})$ " it is called an expression of det(M)

$$det(M) = det\begin{pmatrix} 1 & 1 & 1 \\ x_A & x_B & x_C \\ y_A & y_B & y_C \end{pmatrix}$$
$$= det\begin{pmatrix} 1 & 0 & 0 \\ x_A & x_B - x_A & x_C - y_A \\ y_A & y_B - y_A & y_C - y_A \end{pmatrix}$$
$$= (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Definition

When det(M) can be written as " $det(M) = \sum \prod (x_{e,i} - x_{f,i})$ " it is called an expression of det(M)

$$det(M) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Definition

The sign $x_{e,i} - x_{f,i}$ w.r.t. C, denoted $\sigma_C(x_{e,i} - x_{f,i})$, belongs to $\{+, -\}$ such that: $\sigma_C(x_{e,i} - x_{f,i}) = +$ if $f <_i e$ in C; $\sigma_C(x_{e,i} - x_{f,i}) = -$ if $e <_i f$ in C.

Definition

When det(M) can be written as " $det(M) = \sum \prod (x_{e,i} - x_{f,i})$ " it is called an expression of det(M)

Definition

The sign $x_{e,i} - x_{f,i}$ w.r.t. C, denoted $\sigma_C(x_{e,i} - x_{f,i})$, belongs to $\{+, -\}$ such that:

$$\sigma_{\mathcal{C}}(x_{e,i} - x_{f,i}) = [+]$$
 if $f <_i e$ in \mathcal{C}_i
 $\sigma_{\mathcal{C}}(x_{e,i} - x_{f,i}) = [-]$ if $e <_i f$ in \mathcal{C}_i

Definition

The sign of an expression of det(M) w.r.t. C is

• ? if not

Orientations of Simplices Determined by Orderings on their Vertices

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Formalism

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Example:

$$A <_{x} B <_{x} C$$
$$B <_{y} A <_{y} C$$

$$\det(M) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Kevin Sol

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

$$\begin{array}{l} A <_{x} B <_{x} C \\ B <_{y} A <_{y} C \end{array}$$

$$\det(M) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

$$\begin{array}{l} A <_{x} B <_{x} C \\ B <_{y} A <_{y} C \end{array}$$

$$\det(M) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

$$\begin{array}{l} A <_{x} B <_{x} C \\ B <_{y} A <_{y} C \end{array}$$

$$\det(M) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Example:

$$\begin{array}{l} A <_{x} B <_{x} C \\ B <_{y} A <_{y} C \end{array}$$

$$\det(M) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

 $\Longrightarrow \mathcal{C}$ is fixed

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

$$A <_{x} B <_{x} C$$
$$C <_{y} B <_{y} A$$

$$\det(M_{\mathcal{P}}) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

$$A <_{x} B <_{x} C$$
$$C <_{y} B <_{y} A$$

$$\det(M_{\mathcal{P}}) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

-+-	 — I	<u> </u>

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

$$A <_{x} B <_{x} C$$
$$C <_{y} B <_{y} A$$

$$\det(M_{\mathcal{P}}) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Example (2):

$$A <_{x} B <_{x} C$$
$$C <_{y} B <_{y} A$$

$$\det(M_{\mathcal{P}}) = (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)$$

we can not directly conclude

Orientations of Simplices Determined by Orderings on their Vertices

Key theorem / conjecture 1

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Theorem / Conjecture 1

C is fixed if and only if det(M) has an expression whose sign is + or -.

Key theorem / conjecture 1

Observation 1

If det(M) has such an expression whose sign is + or -, then C is fixed.

Theorem / Conjecture 1

C is fixed if and only if det(M) has an expression whose sign is + or -.

proved in dimension 2 and 3 (n = 3 and 4)

conjecture in higher dimensions

Characterization in dimension 2

Theorems 1 and 2

Up to equivalence, there are exactly two configurations of 2 orderings

$$\begin{array}{l} A <_{x} B <_{x} C \\ A <_{y} C <_{y} B \end{array}$$

 $\begin{array}{l} A <_{x} B <_{x} C \\ A <_{y} B <_{y} C \end{array}$

Kevin Sol

Characterization in dimension 2

Theorems 1 and 2

Up to equivalence, there are exactly two configurations of 2 orderings $% \left({{{\mathbf{r}}_{\mathbf{r}}}_{\mathbf{r}}} \right)$

fixed configuration

non-fixed configuration

Characterization of the fixed configurations in 3D

Theorem 3: fixed configurations

The following are equivalent:

- C is fixed
- the sign of an expression of $(det(M)) \in \{[+, -]\}$
- **(**) up to equivalence, C satisfies

$$B <_x C <_x A$$
$$C <_y A <_y B$$
$$A <_z B <_z C$$

and
and

$$\exists X \in \{A, B, C\}$$
 such that we have either
• $X < D$ in all the orderings
or

• X > D in all the orderings

Fixed configurations in 3D

Up to equivalence, there are exactly 4 fixed configurations:

 $\begin{array}{ll} B <_x C <_x A <_x D \\ C <_y A <_y B <_y D \\ A <_z B <_z C <_z D \end{array} \qquad \begin{array}{ll} B <_x C <_x D <_x A \\ C <_y A <_y B <_y D \\ A <_z B <_z C <_z D \end{array} \qquad \begin{array}{ll} B <_x C <_x D <_x A \\ C <_y A <_y B <_y D \\ A <_z B <_z C <_z D \end{array}$

 $\begin{array}{ll} B <_x D <_x C <_x A \\ C <_y A <_y B <_y D \\ A <_z B <_z C <_z D \end{array} \qquad \begin{array}{ll} B <_x C <_x D <_x A \\ C <_y D <_y A <_y B \\ A <_z B <_z C <_z D \end{array}$

Introduction

Formalism Linear Orderings

Sign of det(M)

An other characterization in 3D

a configuration induced by Cw.r.t. the ordering $<_{y}$

$$D <_x C <_x A$$
$$A <_z D <_z C$$

 $B <_x D <_x C <_x A$ $C <_y A <_y B <_y D$ $A <_z B <_z D <_z C$

С

Sign of det(M)

An other characterization in 3D

a configuration induced by Cw.r.t. the ordering $<_{v}$

 $B <_{x} D <_{x} C <_{x} A$ $C <_{y} A <_{y} B <_{y} D$ $A <_{z} B <_{z} D <_{z} C$

С

 $D <_{x} C <_{x} A$ $A <_{z} D <_{z} C$

Theorem 4: non-fixed configurations

Let \mathcal{C}' be a configuration induced by \mathcal{C} on \mathcal{E}' w.r.t. $<_i$. Let $P \in \mathcal{E} \setminus \mathcal{E}'$.

- $\ensuremath{\mathcal{C}}$ is non-fixed if and only if
 - \mathcal{C}' is non-fixed and
 - *P* is extreme in the ordering $<_i$ of C,

An other characterization in 3D

Theorem 4: non-fixed configurations

Let C' be a configuration induced by C on \mathcal{E}' w.r.t. $<_i$. Let $P \in \mathcal{E} \setminus \mathcal{E}'$.

- $\ensuremath{\mathcal{C}}$ is non-fixed if and only if
 - \mathcal{C}' is non-fixed and
 - *P* is extreme in the ordering $<_i$ of C,

Example:

$$C <_x D <_x A <_x B$$

$$A <_y C <_y B <_y D$$

$$A <_z B <_z C <_z D$$

non-fixed configuration induced by \mathcal{C} extreme point

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

• 10 points 3D

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

- 10 points 3D
- 210 configurations
- 8,112 linear extensions

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

- 10 points 3D
- 210 configurations
- 8,112 linear extensions
- Software in C, very fast (450 ms)
- \implies 20 fixed configurations

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

- 10 points 3D
- 210 configurations
- 8,112 linear extensions
- Software in C, very fast (450 ms)
- \implies 20 fixed configurations

Goal

Find the quadruplets of points which characterize significantly the morphological differences.

Kevin Sol

Orientations of Simplices Determined by Orderings on their Vertices

proved in dimension 2 and 3 (n = 3 and 4)

conjecture in higher dimensions

or | - |.

C is fixed if and only if det(M) has an expression whose sign is + or -.

proved in dimension 2 and 3 (n = 3 and 4)

conjecture in higher dimensions

Thanks!