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Motivation

Study of the 3D shape of anatomical structures.

Applications:
Anatomy, anthropology, paleontology, medicine
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Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Motivation
The expert defines 3D landmark points based on anatomical
knowledge

We encode the shape of the anatomical structure with the
orientation of all quadruplets of points.

=⇒ combinatorial study of 3D anatomical structures
Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 3 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

The problem

But for an anatomical structure, we can define ordering relations
between the coordinates of the points;

blabla

View from the front
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The problem

But for an anatomical structure, we can define ordering relations
between the coordinates of the points;
Some points are on top of others

View from the front View from the right
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The problem

But for an anatomical structure, we can define ordering relations
between the coordinates of the points;
Some points are in front of others

View from the front View from the right
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The problem
Landmark point positions change due to morphological variability
or differences...

Skull 1

. . .
Skull k

but they still respect the orderings.

Question
Can we determine quadruplets of points whose orientation depend
only on the orderings (i.e. independently of the coordinate values)?
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Orientation of a simplex

Definition
The orientation of a simplex (∈ {+,−, 0}):

Triplet (A,B,C):

B

C

A

+

C

B

A

−

A

B

C

0
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Orientation of a simplex

Definition
The orientation of a simplex (∈ {+,−, 0}):

Quadruplet (A,B,C ,D):

A

C

B

D

Orientation of the triplet (B,C ,D)
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Orientation of a simplex

Definition
The orientation of a simplex (∈ {+,−, 0}):

Orientations of simplices = chirotopes of an oriented matroid
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Formalism

Notations
M: a formal matrix

M =


1 1 . . . 1
x1,1 x2,1 . . . xn,1
x1,2 x2,2 . . . xn,2
...

... . . . ...
x1,n−1 x2,n−1 . . . xn,n−1


where xj,i is a formal variable

P: a set of n points Pj in a space of dimension n − 1
the real matrix MP

Orientation of P = sign of det(MP)

Remark
Orientation of P = 0 ⇐⇒ P is contained in an hyperplane
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Configuration of orderings

Definition
We call configuration of n − 1 orderings on E , a set C of n − 1
orderings on a set E of size n.

Example: a configuration C of 3 orderings in {A,B,C ,D}

A <x B <x C <x D
B <y D <y C and B <y A <y C

D <z A
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P satisfies C

Example: a configuration C of 3 orderings in {A,B,C ,D}

A <x B <x C <x D
B <y D <y C and B <y A <y C

D <z A

Definition
A set of points P satisfies C if
∀i ∈ {1, . . . , n − 1}, ∀e, f ∈ E , e <i f =⇒ xe,i < xf ,i

P = {P1 (0, 4, 3); P2 (2, 2, 3); P3 (3, 5, 0); P4 (5, 3, 1)} satisfies C:

x(P1) < x(P2) < x(P3) < x(P4)
y(P2) < y(P4) < y(P3) and y(P2) < y(P1) < y(P3)

z(P4) < z(P1)
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Fixed configuration

Definition
C is fixed if for all P satisfying C, P has always the same
orientation.

Examples in 2D:

A <x B <x C
B <y C <y A

xA = xB

fixed configuration

A <x B <x C
A <y B <y C

non-fixed configuration
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Equivalence

Definition
Two configurations of n − 1 orderings are equivalent if they are
equal up to a relabelling of E , a permutation of orderings, and
reversion(s) of orderings.

Example in 2D:

A <x B <x C
B <y C <y A

C

B

A
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reversion(s) of orderings.

Example in 2D:

A <x B <x C
B <y C <y A
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a relabelling of E

a reflection w.r.t. a

diagonal axis

a

B <x A <x C
A <y C <y B

C

B

A
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Equivalence

Definition
Two configurations of n − 1 orderings are equivalent if they are
equal up to a relabelling of E , a permutation of orderings, and
reversion(s) of orderings.

Example in 2D:

A <x B <x C
B <y C <y A

C

B

A

a reversion of an
ordering

reflection w.r.t. a
horizontal (or
vertical) axis

A <x B <x C
A <y C <y B

A

C

B
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Sign of det(M): σC(det(M))

Definition
The sign of det(M) w.r.t. C, denoted σC(det(M)), belongs to
{ + , − , ± }:

if C is fixed: for all P satisfying C, det(MP) has the same
sign, either + or -.
=⇒ σC(det(M)) ∈ { + , − }.

if C is non-fixed: there exist P1 and P2 satisfying C such that
det(MP1) < 0 and det(MP2) > 0.
=⇒ σC(det(M)) = ± .
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Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Sign of det(M): σC(det(M))

Definition
The sign of det(M) w.r.t. C, denoted σC(det(M)), belongs to
{ + , − , ± }:

if C is fixed: for all P satisfying C, det(MP) has the same
sign, either + or -.

=⇒ σC(det(M)) ∈ { + , − }.

if C is non-fixed: there exist P1 and P2 satisfying C such that
det(MP1) < 0 and det(MP2) > 0.
=⇒ σC(det(M)) = ± .

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 12 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Sign of det(M): σC(det(M))

Definition
The sign of det(M) w.r.t. C, denoted σC(det(M)), belongs to
{ + , − , ± }:

if C is fixed: for all P satisfying C, det(MP) has the same
sign, either + or -.
=⇒ σC(det(M)) ∈ { + , − }.

if C is non-fixed: there exist P1 and P2 satisfying C such that
det(MP1) < 0 and det(MP2) > 0.
=⇒ σC(det(M)) = ± .

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 12 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Sign of det(M): σC(det(M))

Definition
The sign of det(M) w.r.t. C, denoted σC(det(M)), belongs to
{ + , − , ± }:

if C is fixed: for all P satisfying C, det(MP) has the same
sign, either + or -.
=⇒ σC(det(M)) ∈ { + , − }.

if C is non-fixed: there exist P1 and P2 satisfying C such that
det(MP1) < 0 and det(MP2) > 0.

=⇒ σC(det(M)) = ± .

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 12 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

Sign of det(M): σC(det(M))

Definition
The sign of det(M) w.r.t. C, denoted σC(det(M)), belongs to
{ + , − , ± }:

if C is fixed: for all P satisfying C, det(MP) has the same
sign, either + or -.
=⇒ σC(det(M)) ∈ { + , − }.

if C is non-fixed: there exist P1 and P2 satisfying C such that
det(MP1) < 0 and det(MP2) > 0.
=⇒ σC(det(M)) = ± .

Kevin Sol Orientations of Simplices Determined by Orderings on their Vertices 12 / 25



Introduction Formalism Linear Orderings Sign of det(M) Characterizations in 2D / 3D Conclusion

The problem (rewording)

Question (reminder)
Can we determine quadruplets of points whose orientation depend
only on the orderings (i.e. independently of the coordinate values)?

The problem (rewording)
Determine the fixity of the configurations (determine if they are
fixed or non-fixed).

The problem (rewording 2)
Does there exist P satisfying C such that det(MP) = 0?
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Linear extensions

Definition
A linear extension of a configuration C is a configuration where
each ordering of C is replaced by one of its linear extensions.

Example:

C
A <x B <x C <x D

B <y D <y C and B <y A <y C
D <z A

a linear extension of C

A <x B <x C <x D
B <y D <y A <y C
D <z A <z C <z B
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Linear extensions

Proposition 1
C is non-fixed ⇐⇒ ∃ a non-fixed linear extension of C.

Proposition 1 (rewording)
C is fixed ⇐⇒ all linear extension of C are fixed.

=⇒ We will concentrate only on linear configurations.

d
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Computing σC(det(M))

Definition
When det(M) can be written as

“det(M) =
∑ ∏

(xe,i − xf ,i)”
it is called an expression of det(M)

Example:

det(M) = det

 1 1 1
xA xB xC
yA yB yC


= det

 1 0 0
xA xB − xA xC − yA
yA yB − yA yC − yA


= (xB − xA)(yC − yA)− (yB − yA)(xC − xA)
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The sign xe,i − xf ,i w.r.t. C, denoted σC(xe,i − xf ,i), belongs to
{ + , − } such that:

σC(xe,i − xf ,i) = + if f <i e in C;
σC(xe,i − xf ,i) = − if e <i f in C.

Definition
The sign of an expression of det(M) w.r.t. C is

+ or − if it can be calculated
? if not
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Computing σC(det(M))

Observation 1
If det(M) has such an expression whose sign is + or − , then C is
fixed.

Example:
A <x B <x C
B <y A <y C

det(M) = (xB − xA)(yC − yA)− (yB − yA)(xC − xA)

+ +

deqd

−

d

+
+ − − = +

desvdq

=⇒ C is fixed
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Computing σC(det(M))

Observation 1
If det(M) has such an expression whose sign is + or − , then C is
fixed.

Example (2):

A <x B <x C
C <y B <y A

det(MP) = (xB − xA)(yC − yA)− (yB − yA)(xC − xA)

+ +

deqd

−

d

−
+ − + = ?

desvdq

we can not directly conclude
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Key theorem / conjecture 1

Observation 1
If det(M) has such an expression whose sign is + or − , then C is
fixed.

Theorem / Conjecture 1
C is fixed if and only if det(M) has an expression whose sign is +

or − .

proved in dimension 2 and 3 (n = 3 and 4)

conjecture in higher dimensions
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Characterization in dimension 2

Theorems 1 and 2
Up to equivalence, there are exactly two configurations of 2
orderings

A <x B <x C
A <y C <y B

C

B

A

fixed configuration

A <x B <x C
A <y B <y C

A

B

C

non-fixed configuration
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Characterization of the fixed configurations in 3D

Theorem 3: fixed configurations
The following are equivalent:

C is fixed
the sign of an expression of (det(M)) ∈ { + , − }

1 up to equivalence, C satisfies

B <x C <x A
C <y A <y B
A <z B <z C

and
2 ∃ X ∈ {A,B,C} such that we have either

X < D in all the orderings
or
X > D in all the orderings
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Fixed configurations in 3D

Up to equivalence, there are exactly 4 fixed configurations:

B <x C <x A <x D
C <y A <y B <y D
A <z B <z C <z D

B <x C <x D <x A
C <y A <y B <y D
A <z B <z C <z D

B <x D <x C <x A
C <y A <y B <y D
A <z B <z C <z D

B <x C <x D <x A
C <y D <y A <y B
A <z B <z C <z D
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An other characterization in 3D
C a configuration induced by C

w.r.t. the ordering <y
B <x D <x C <x A
C <y A <y B <y D
A <z B <z D <z C

D <x C <x A
A <z D <z C

Theorem 4: non-fixed configurations
Let C′ be a configuration induced by C on E ′ w.r.t. <i . Let
P ∈ E\E ′.
C is non-fixed if and only if

C′ is non-fixed and
P is extreme in the ordering <i of C,

Example:
C <x D <x A <x B
A <y C <y B <y D
A <z B <z C <z D

non-fixed configuration induced by C
extreme point
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Experimentation

In this example
Set of skulls for morphometrical analysis of craniofacial
morphology (dental classes)

10 points 3D

210 configurations
8,112 linear extensions

Software in C,
very fast (450 ms)
=⇒ 20 fixed configurations

Goal
Find the quadruplets of points which characterize significantly the
morphological differences.
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Conjecture

Theorem / Conjecture 1
C is fixed if and only if det(M) has an expression whose sign is +

or − .

proved in dimension 2 and 3 (n = 3 and 4)

conjecture in higher dimensions

Thanks!
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