Orientations of Simplices Determined by Orderings on the Coordinates of their Vertices

Kevin Sol
Joint work with Emeric Gioan and Gérard Subsol

LIRMM - Montpellier
France
CCCG 2011

Research supported by the OMSMO (Oriented Matroids for Shape MOdeling) Project and the TEOMATRO Grant

Motivation

Study of the 3D shape of anatomical structures.

Applications:
Anatomy, anthropology, paleontology, medicine

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

- We encode the shape of the anatomical structure with the orientation of all quadruplets of points.

Motivation

- The expert defines 3D landmark points based on anatomical knowledge

- We encode the shape of the anatomical structure with the orientation of all quadruplets of points.
\Longrightarrow combinatorial study of 3D anatomical structures

The problem

But for an anatomical structure, we can define ordering relations between the coordinates of the points;

View from the front

The problem

But for an anatomical structure, we can define ordering relations between the coordinates of the points;

View from the front

View from the right

The problem

But for an anatomical structure, we can define ordering relations between the coordinates of the points; Some points are to the left of others

View from the front

View from the right

The problem

But for an anatomical structure, we can define ordering relations between the coordinates of the points;
Some points are on top of others

View from the front

View from the right

The problem

But for an anatomical structure, we can define ordering relations between the coordinates of the points; Some points are in front of others

View from the front

View from the right

The problem

Landmark point positions change due to morphological variability or differences...

Skull 1

Skull k

The problem

Landmark point positions change due to morphological variability or differences...

Skull 1

Skull k
but they still respect the orderings.

The problem

Landmark point positions change due to morphological variability or differences...

Skull 1

Skull k
but they still respect the orderings.

Question

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$:

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$: Triplet (A, B, C) :

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$: Triplet (A, B, C) :

$+$
-

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$: Quadruplet (A, B, C, D) :

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$: Quadruplet (A, B, C, D) :

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$: Quadruplet (A, B, C, D) :

Orientation of the triplet (B, C, D)

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$: Quadruplet (A, B, C, D) :

Orientation of a simplex

Definition

The orientation of a simplex $(\in\{+,-, 0\})$:

Orientations of simplices $=$ chirotopes of an oriented matroid

Formalism

Notations

- M: a formal matrix

$$
M=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1,1} & x_{2,1} & \ldots & x_{n, 1} \\
x_{1,2} & x_{2,2} & \ldots & x_{n, 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1, n-1} & x_{2, n-1} & \ldots & x_{n, n-1}
\end{array}\right)
$$

where $x_{j, i}$ is a formal variable

Formalism

Notations

- M: a formal matrix
- \mathcal{P} : a set of n points P_{j} in a space of dimension $n-1$

Formalism

Notations

- M: a formal matrix
- \mathcal{P} : a set of n points P_{j} in a space of dimension $n-1$
- Assigns M with $P_{j, i}$ (i-th coordinate of the point P_{j})

$$
M_{\mathcal{P}}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
P_{1,1} & P_{2,1} & \ldots & P_{n, 1} \\
P_{1,2} & P_{2,2} & \ldots & P_{n, 2} \\
\vdots & \vdots & \ddots & \vdots \\
P_{1, n-1} & P_{2, n-1} & \ldots & P_{n, n-1}
\end{array}\right)
$$

Orientation of $\mathcal{P}=\operatorname{sign}$ of $\operatorname{det}\left(M_{\mathcal{P}}\right)$

Formalism

Notations

- M: a formal matrix
- \mathcal{P} : a set of n points P_{j} in a space of dimension $n-1$
- the real matrix $M_{\mathcal{P}}$

Orientation of $\mathcal{P}=\operatorname{sign}$ of $\operatorname{det}\left(M_{\mathcal{P}}\right)$

Remark

Orientation of $\mathcal{P}=0 \Longleftrightarrow \mathcal{P}$ is contained in an hyperplane

Configuration of orderings

Definition

We call configuration of $n-1$ orderings on \mathcal{E}, a set \mathcal{C} of $n-1$ orderings on a set \mathcal{E} of size n.

Configuration of orderings

Definition

We call configuration of $n-1$ orderings on \mathcal{E}, a set \mathcal{C} of $n-1$ orderings on a set \mathcal{E} of size n.

Example: a configuration \mathcal{C} of 3 orderings in $\{A, B, C, D\}$

$$
\begin{gathered}
A<_{x} B<_{x} C<_{x} D \\
B<_{y} D<_{y} C \text { and } B<_{y} A<_{y} C \\
D<_{z} A
\end{gathered}
$$

P satisfies \mathcal{C}

Example: a configuration \mathcal{C} of 3 orderings in $\{A, B, C, D\}$

$$
\begin{gathered}
A<_{x} B<_{x} C<_{x} D \\
B<_{y} D<_{y} C \text { and } B<_{y} A<_{y} C \\
D<_{z} A
\end{gathered}
$$

P satisfies \mathcal{C}

Example: a configuration \mathcal{C} of 3 orderings in $\{A, B, C, D\}$

$$
\begin{gathered}
A<_{x} B<_{x} C<_{x} D \\
B<_{y} D<_{y} C \underset{\text { and }}{ } B<_{y} A<_{y} C \\
D<_{z} A
\end{gathered}
$$

Definition

A set of points \mathcal{P} satisfies \mathcal{C} if
$\forall i \in\{1, \ldots, n-1\}, \forall e, f \in \mathcal{E}, \quad e<_{i} f \Longrightarrow x_{e, i}<x_{f, i}$

P satisfies \mathcal{C}

Example: a configuration \mathcal{C} of 3 orderings in $\{A, B, C, D\}$

$$
\begin{gathered}
A<_{x} B<_{x} C<_{x} D \\
B<_{y} D<_{y} C \underset{\text { and }}{ } B<_{y} A<_{y} C \\
D<_{z} A
\end{gathered}
$$

Definition

A set of points \mathcal{P} satisfies \mathcal{C} if
$\forall i \in\{1, \ldots, n-1\}, \forall e, f \in \mathcal{E}, \quad e<_{i} f \Longrightarrow x_{e, i}<x_{f, i}$
$\mathcal{P}=\left\{P_{1}(0,4,3) ; P_{2}(2,2,3) ; P_{3}(3,5,0) ; P_{4}(5,3,1)\right\}$ satisfies $\mathcal{C}:$

$$
\begin{gathered}
x\left(P_{1}\right)<x\left(P_{2}\right)<x\left(P_{3}\right)<x\left(P_{4}\right) \\
y\left(P_{2}\right)<y\left(P_{4}\right)<y\left(P_{3}\right) \text { and } y\left(P_{2}\right)<y\left(P_{1}\right)<y\left(P_{3}\right) \\
z\left(P_{4}\right)<z\left(P_{1}\right)
\end{gathered}
$$

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Examples in 2D:

$$
\begin{array}{ll}
A<_{x} B<_{x} C & A<_{x} B<_{x} C \\
B<_{y} C<_{y} A & A<_{y} B<_{y} C
\end{array}
$$

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Examples in 2D:

$$
\begin{array}{ll}
A<_{x} B<_{x} C & A<_{x} B<_{x} C \\
B<_{y} C<_{y} A & A<_{y} B<_{y} C
\end{array}
$$

$$
x_{A}=x_{B}
$$

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Examples in 2D:

$$
\begin{array}{ll}
A<_{x} B<_{x} C & A<_{x} B<_{x} C \\
B<_{y} C<_{y} A & A<_{y} B<_{y} C
\end{array}
$$

$$
x_{A}=x_{B} \quad x_{B}=x_{C}
$$

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Examples in 2D:

$$
\begin{array}{ll}
A<_{x} B<_{x} C & A<_{x} B<_{x} C \\
B<_{y} C<_{y} A & A<_{y} B<_{y} C
\end{array}
$$

$$
x_{A}=x_{B} \quad x_{B}=x_{C}
$$

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Examples in 2D:

$$
\begin{array}{ll}
A<_{x} B<_{x} C & A<_{x} B<_{x} C \\
B<_{y} C<_{y} A & A<_{y} B<_{y} C
\end{array}
$$

$$
x_{A}=x_{B} \quad x_{B}=x_{C}
$$

fixed configuration

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Examples in 2D:

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& A<_{y} B<_{y} C
\end{aligned}
$$

$$
x_{A}=x_{B} \quad x_{B}=x_{C}
$$

fixed configuration

Fixed configuration

Definition

\mathcal{C} is fixed if for all \mathcal{P} satisfying \mathcal{C}, \mathcal{P} has always the same orientation.

Examples in 2D:

fixed configuration

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& A<_{y} B<_{y} C
\end{aligned}
$$

$$
x_{A}=x_{B} \quad x_{B}=x_{C}
$$

non-fixed configuration

Equivalence

Definition

Two configurations of $n-1$ orderings are equivalent if they are equal up to a relabelling of \mathcal{E}, a permutation of orderings, and reversion(s) of orderings.

Equivalence

Definition

Two configurations of $n-1$ orderings are equivalent if they are equal up to a relabelling of \mathcal{E}, a permutation of orderings, and reversion(s) of orderings.

Example in 2D:

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& B<_{y} C<_{y} A
\end{aligned}
$$

Equivalence

Definition

Two configurations of $n-1$ orderings are equivalent if they are equal up to a relabelling of \mathcal{E}, a permutation of orderings, and reversion(s) of orderings.

Example in 2D:

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& B<_{y} C<_{y} A
\end{aligned}
$$

a relabelling of \mathcal{E}
$B<_{x} A<_{x} C$
$A<y C<y B$

Equivalence

Definition

Two configurations of $n-1$ orderings are equivalent if they are equal up to a relabelling of \mathcal{E}, a permutation of orderings, and reversion(s) of orderings.

Example in 2D:

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& B<_{y} C<_{y} A
\end{aligned}
$$

a permutation of orderings

$$
\begin{aligned}
& B<_{x} C<_{x} A \\
& A<_{y} B<_{y} C
\end{aligned}
$$

Equivalence

Definition

Two configurations of $n-1$ orderings are equivalent if they are equal up to a relabelling of \mathcal{E}, a permutation of orderings, and reversion(s) of orderings.

Example in 2D:

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& B<_{y} C<_{y} A
\end{aligned}
$$

a reversion of an ordering
$A<_{x} B<_{x} C$
$A<y C<y B$

Sign of $\operatorname{det}(M): \sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

The sign of $\operatorname{det}(M)$ w.r.t. \mathcal{C}, denoted $\sigma_{\mathcal{C}}(\operatorname{det}(M))$, belongs to $\{[+, \boxed{-}, \pm\}$:

Sign of $\operatorname{det}(M): \sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

The sign of $\operatorname{det}(M)$ w.r.t. \mathcal{C}, denoted $\sigma_{\mathcal{C}}(\operatorname{det}(M))$, belongs to $\{[+, \boxed{-}, \pm\}$:

- if \mathcal{C} is fixed: for all \mathcal{P} satisfying $\mathcal{C}, \operatorname{det}\left(M_{\mathcal{P}}\right)$ has the same sign, either + or -.

Sign of $\operatorname{det}(M): \sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

The sign of $\operatorname{det}(M)$ w.r.t. \mathcal{C}, denoted $\sigma_{\mathcal{C}}(\operatorname{det}(M))$, belongs to $\{[+, \boxed{-}, \pm\}$:

- if \mathcal{C} is fixed: for all \mathcal{P} satisfying $\mathcal{C}, \operatorname{det}\left(M_{\mathcal{P}}\right)$ has the same sign, either + or -.
$\Longrightarrow \sigma_{\mathcal{C}}(\operatorname{det}(M)) \in\{\square+, \square\}$.

Sign of $\operatorname{det}(M): \sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

The sign of $\operatorname{det}(M)$ w.r.t. \mathcal{C}, denoted $\sigma_{\mathcal{C}}(\operatorname{det}(M))$, belongs to $\{[+, \boxed{-}, \pm\}$:

- if \mathcal{C} is fixed: for all \mathcal{P} satisfying $\mathcal{C}, \operatorname{det}\left(M_{\mathcal{P}}\right)$ has the same sign, either + or -.
$\Longrightarrow \sigma_{\mathcal{C}}(\operatorname{det}(M)) \in\{\square+, \square\}$.
- if \mathcal{C} is non-fixed: there exist \mathcal{P}_{1} and \mathcal{P}_{2} satisfying \mathcal{C} such that $\operatorname{det}\left(M_{\mathcal{P}_{1}}\right)<0$ and $\operatorname{det}\left(M_{\mathcal{P}_{2}}\right)>0$.

Sign of $\operatorname{det}(M): \sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

The sign of $\operatorname{det}(M)$ w.r.t. \mathcal{C}, denoted $\sigma_{\mathcal{C}}(\operatorname{det}(M))$, belongs to $\{[+, \boxed{-}, \pm\}$:

- if \mathcal{C} is fixed: for all \mathcal{P} satisfying $\mathcal{C}, \operatorname{det}\left(M_{\mathcal{P}}\right)$ has the same sign, either + or -.
$\Longrightarrow \sigma_{\mathcal{C}}(\operatorname{det}(M)) \in\{\square+, \square\}$.
- if \mathcal{C} is non-fixed: there exist \mathcal{P}_{1} and \mathcal{P}_{2} satisfying \mathcal{C} such that $\operatorname{det}\left(M_{\mathcal{P}_{1}}\right)<0$ and $\operatorname{det}\left(M_{\mathcal{P}_{2}}\right)>0$. $\Longrightarrow \sigma_{\mathcal{C}}(\operatorname{det}(M))= \pm$.

The problem (rewording)

Question (reminder)

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

The problem (rewording)

Question (reminder)

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

The problem (rewording)

Determine the fixity of the configurations (determine if they are fixed or non-fixed).

The problem (rewording)

Question (reminder)

Can we determine quadruplets of points whose orientation depend only on the orderings (i.e. independently of the coordinate values)?

The problem (rewording)

Determine the fixity of the configurations (determine if they are fixed or non-fixed).

The problem (rewording 2)

Does there exist \mathcal{P} satisfying \mathcal{C} such that $\operatorname{det}\left(M_{\mathcal{P}}\right)=0$?

Linear extensions

Definition

A linear extension of a configuration \mathcal{C} is a configuration where each ordering of \mathcal{C} is replaced by one of its linear extensions.

Linear extensions

Definition

A linear extension of a configuration \mathcal{C} is a configuration where each ordering of \mathcal{C} is replaced by one of its linear extensions.

Example:

$$
\begin{gathered}
A<_{x} B<_{x} C<_{x} D \\
B<_{y} D<_{y} C \underset{k_{z}}{\text { and }} B<_{y} A<_{y} C
\end{gathered}
$$

a linear extension of \mathcal{C}

$$
\begin{aligned}
& A<_{x} B<_{x} C<_{x} D \\
& B<_{y} D<_{y} A<_{y} C \\
& D<_{z} A<_{z} C<_{z} B
\end{aligned}
$$

Linear extensions

Proposition 1

\mathcal{C} is non-fixed $\Longleftrightarrow \exists$ a non-fixed linear extension of \mathcal{C}.

Linear extensions

Proposition 1

\mathcal{C} is non-fixed $\Longleftrightarrow \exists$ a non-fixed linear extension of \mathcal{C}.

Proposition 1 (rewording)

\mathcal{C} is fixed \Longleftrightarrow all linear extension of \mathcal{C} are fixed.

Linear extensions

Proposition 1

\mathcal{C} is non-fixed $\Longleftrightarrow \exists$ a non-fixed linear extension of \mathcal{C}.

Proposition 1 (rewording)

\mathcal{C} is fixed \Longleftrightarrow all linear extension of \mathcal{C} are fixed.
\Longrightarrow We will concentrate only on linear configurations.

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

When $\operatorname{det}(M)$ can be written as

$$
" \operatorname{det}(M)=\sum \prod\left(x_{e, i}-x_{f, i}\right) "
$$

it is called an expression of $\operatorname{det}(M)$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

When $\operatorname{det}(M)$ can be written as

$$
" \operatorname{det}(M)=\sum \prod\left(x_{e, i}-x_{f, i}\right) "
$$

it is called an expression of $\operatorname{det}(M)$

Example:

$$
\operatorname{det}(M)=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
x_{A} & x_{B} & x_{C} \\
y_{A} & y_{B} & y_{C}
\end{array}\right)
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

When $\operatorname{det}(M)$ can be written as

$$
" \operatorname{det}(M)=\sum \prod\left(x_{e, i}-x_{f, i}\right) "
$$

it is called an expression of $\operatorname{det}(M)$

Example:

$$
\begin{aligned}
\operatorname{det}(M) & =\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
x_{A} & x_{B} & x_{C} \\
y_{A} & y_{B} & y_{C}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
x_{A} & x_{B}-x_{A} & x_{C}-y_{A} \\
y_{A} & y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right)
\end{aligned}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

When $\operatorname{det}(M)$ can be written as

$$
" \operatorname{det}(M)=\sum \prod\left(x_{e, i}-x_{f, i}\right) "
$$

it is called an expression of $\operatorname{det}(M)$

Example:

$$
\begin{aligned}
\operatorname{det}(M) & =\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
x_{A} & x_{B} & x_{C} \\
y_{A} & y_{B} & y_{C}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
x_{A} & x_{B}-x_{A} & x_{C}-y_{A} \\
y_{A} & y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right) \\
& =\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right)
\end{aligned}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

When $\operatorname{det}(M)$ can be written as

$$
" \operatorname{det}(M)=\sum \prod\left(x_{e, i}-x_{f, i}\right) "
$$

it is called an expression of $\operatorname{det}(M)$

$$
\operatorname{det}(M)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right)
$$

Definition

The sign $x_{e, i}-x_{f, i}$ w.r.t. \mathcal{C}, denoted $\sigma_{\mathcal{C}}\left(x_{e, i}-x_{f, i}\right)$, belongs to $\{\boxed{+}, \boxed{-}\}$ such that:

$$
\begin{aligned}
& \sigma_{\mathcal{C}}\left(x_{e, i}-x_{f, i}\right)=\square \text { if } f<_{i} e \text { in } \mathcal{C} ; \\
& \sigma_{\mathcal{C}}\left(x_{e, i}-x_{f, i}\right)=- \text { if } e<_{i} f \text { in } \mathcal{C} .
\end{aligned}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Definition

When $\operatorname{det}(M)$ can be written as

$$
" \operatorname{det}(M)=\sum \prod\left(x_{e, i}-x_{f, i}\right) "
$$

it is called an expression of $\operatorname{det}(M)$

Definition

The sign $x_{e, i}-x_{f, i}$ w.r.t. \mathcal{C}, denoted $\sigma_{\mathcal{C}}\left(x_{e, i}-x_{f, i}\right)$, belongs to $\{\boxed{+}, \boxed{-}\}$ such that:

$$
\begin{aligned}
& \sigma_{\mathcal{C}}\left(x_{e, i}-x_{f, i}\right)=\square \text { if } f<_{i} e \text { in } \mathcal{C} ; \\
& \sigma_{\mathcal{C}}\left(x_{e, i}-x_{f, i}\right)=- \text { if } e<_{i} f \text { in } \mathcal{C} .
\end{aligned}
$$

Definition

The sign of an expression of $\operatorname{det}(M)$ w.r.t. \mathcal{C} is

- \square or $\square-$ if it can be calculated
- ? if not

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example:

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& B<_{y} A<_{y} C
\end{aligned}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example:

$$
\begin{gathered}
A<_{x} B<_{x} C \\
B<_{y} A<_{y} C \\
\operatorname{det}(M)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right)
\end{gathered}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example:

$$
\begin{gathered}
A<_{x} B<_{x} C \\
B<_{y} A<_{y} C \\
\operatorname{det}(M)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right)
\end{gathered}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example:

$$
\begin{gathered}
A<_{x} B<_{x} C \\
B<_{y} A<_{y} C \\
\operatorname{det}(M)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right) \\
+\square
\end{gathered}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example:

$$
\begin{gathered}
A<_{x} B<_{x} C \\
B<_{y} A<_{y} C \\
\operatorname{det}(M)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right) \\
+\square+\square
\end{gathered}=
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example:

$$
\begin{gathered}
A<_{x} B<_{x} C \\
B<_{y} A<_{y} C \\
\operatorname{det}(M)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right) \\
\boxed{+}=\square+\square
\end{gathered}
$$

$\Longrightarrow \mathcal{C}$ is fixed

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example (2):

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example (2):

$$
\begin{gathered}
A<_{x} B<_{x} C \\
C<_{y} B<_{y} A \\
\operatorname{det}\left(M_{\mathcal{P}}\right)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right)
\end{gathered}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example (2):

$$
\begin{gathered}
A<_{x} B<_{x} C \\
C<_{y} B<_{y} A \\
\operatorname{det}\left(M_{\mathcal{P}}\right)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right) \\
\square-\square
\end{gathered}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example (2):

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& C<y B<y A \\
& \operatorname{det}\left(M_{\mathcal{P}}\right)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right) \\
& \begin{array}{cccc}
\hline+ & \boxed{+} & \boxed{-} & \boxed{-} \\
& + & - & + \\
& & &
\end{array}
\end{aligned}
$$

Computing $\sigma_{\mathcal{C}}(\operatorname{det}(M))$

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Example (2):

$$
\begin{gathered}
A<_{x} B<_{x} C \\
C<_{y} B<_{y} A \\
\operatorname{det}\left(M_{\mathcal{P}}\right)=\left(x_{B}-x_{A}\right)\left(y_{C}-y_{A}\right)-\left(y_{B}-y_{A}\right)\left(x_{C}-x_{A}\right) \\
\boxed{+}+\square \square+\square
\end{gathered}
$$

we can not directly conclude

Key theorem / conjecture 1

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Theorem / Conjecture 1

\mathcal{C} is fixed if and only if $\operatorname{det}(M)$ has an expression whose sign is or - .

Key theorem / conjecture 1

Observation 1

If $\operatorname{det}(M)$ has such an expression whose sign is $\square+$ or $\boxed{-}$, then \mathcal{C} is fixed.

Theorem / Conjecture 1

\mathcal{C} is fixed if and only if $\operatorname{det}(M)$ has an expression whose sign is + or - .
proved in dimension 2 and 3 ($n=3$ and 4)
conjecture in higher dimensions

Characterization in dimension 2

Theorems 1 and 2

Up to equivalence, there are exactly two configurations of 2 orderings

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& A<_{y} C<_{y} B
\end{aligned}
$$

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& A<_{y} B<_{y} C
\end{aligned}
$$

Characterization in dimension 2

Theorems 1 and 2

Up to equivalence, there are exactly two configurations of 2 orderings

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& A<_{y} C<_{y} B
\end{aligned}
$$

$$
\begin{aligned}
& A<_{x} B<_{x} C \\
& A<_{y} B<_{y} C
\end{aligned}
$$

Characterization of the fixed configurations in 3D

Theorem 3: fixed configurations

The following are equivalent:

- \mathcal{C} is fixed
- the sign of an expression of $(\operatorname{det}(M)) \in\{\boxed{+}, \boxed{-}\}$
- (1) up to equivalence, \mathcal{C} satisfies

$$
\begin{aligned}
& B<_{x} C<_{x} A \\
& C<_{y} A<_{y} B \\
& A<_{z} B<_{z} C
\end{aligned}
$$

and
(2) $\exists X \in\{A, B, C\}$ such that we have either

- $X<D$ in all the orderings
or
- $X>D$ in all the orderings

Fixed configurations in 3D

Up to equivalence, there are exactly 4 fixed configurations:

$$
\begin{array}{ll}
B<_{x} C<_{x} A<_{x} D & B<_{x} C<_{x} D<_{x} A \\
C<_{y} A<_{y} B<_{y} D & C<_{y} A<_{y} B<_{y} D \\
A<_{z} B<_{z} C<_{z} D & A<_{z} B<_{z} C<_{z} D \\
& \\
B<_{x} D<_{x} C<_{x} A & B<_{x} C<_{x} D<_{x} A \\
C<_{y} A<_{y} B<_{y} D & C<_{y} D<_{y} A<_{y} B \\
A<_{z} B<_{z} C<_{z} D & A<_{z} B<_{z} C<_{z} D
\end{array}
$$

An other characterization in 3D

$$
\begin{gathered}
\mathcal{C} \\
B<_{x} D<_{x} C<_{x} A \\
C<_{y} A<_{y} B<_{y} D \\
A<_{z} B<_{z} D<_{z} C
\end{gathered}
$$

a configuration induced by \mathcal{C} w.r.t. the ordering $<_{y}$

$$
\begin{aligned}
& D<_{x} C<_{x} A \\
& A<_{z} D<_{z} C
\end{aligned}
$$

An other characterization in 3D

$$
B<_{x} D<_{x} C<_{x} A
$$

$$
C<_{y} A<_{y} B<_{y} D
$$

$$
A<_{z} B<_{z} D<_{z} C
$$

a configuration induced by \mathcal{C} w.r.t. the ordering $<_{y}$

$$
\begin{aligned}
& D<_{x} C<_{x} A \\
& A<_{z} D<_{z} C
\end{aligned}
$$

Theorem 4: non-fixed configurations

Let \mathcal{C}^{\prime} be a configuration induced by \mathcal{C} on \mathcal{E}^{\prime} w.r.t. $<_{i}$. Let $P \in \mathcal{E} \backslash \mathcal{E}^{\prime}$.
\mathcal{C} is non-fixed if and only if

- \mathcal{C}^{\prime} is non-fixed and
- P is extreme in the ordering $<_{i}$ of \mathcal{C},

An other characterization in 3D

Theorem 4: non-fixed configurations

Let \mathcal{C}^{\prime} be a configuration induced by \mathcal{C} on \mathcal{E}^{\prime} w.r.t. $<_{i}$. Let $P \in \mathcal{E} \backslash \mathcal{E}^{\prime}$.
\mathcal{C} is non-fixed if and only if

- \mathcal{C}^{\prime} is non-fixed and
- P is extreme in the ordering $<_{i}$ of \mathcal{C},

Example:

$$
\begin{aligned}
& C<_{x} D<_{x} A<_{x} B \\
& A<_{y} C<_{y} B<_{y} D \\
& A<_{z} B<_{z} C<_{z} D
\end{aligned}
$$

non-fixed configuration induced by \mathcal{C}
extreme point

Experimentation

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

- 10 points 3D

Experimentation

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

- 10 points 3D
- 210 configurations
- 8,112 linear extensions

Experimentation

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

- 10 points 3D
- 210 configurations
- 8,112 linear extensions
- Software in C, very fast (450 ms)
- $\Longrightarrow 20$ fixed configurations

Experimentation

In this example

Set of skulls for morphometrical analysis of craniofacial morphology (dental classes)

- 10 points 3D
- 210 configurations
- 8,112 linear extensions
- Software in C, very fast (450 ms)
- $\Longrightarrow 20$ fixed configurations

Goal

Find the quadruplets of points which characterize significantly the morphological differences.

Conjecture

Theorem / Conjecture 1

\mathcal{C} is fixed if and only if $\operatorname{det}(M)$ has an expression whose sign is \qquad or - .
proved in dimension 2 and $3(n=3$ and 4$)$
conjecture in higher dimensions

Conjecture

Theorem / Conjecture 1

\mathcal{C} is fixed if and only if $\operatorname{det}(M)$ has an expression whose sign is \square or - .
proved in dimension 2 and $3(n=3$ and 4$)$
conjecture in higher dimensions

Thanks!

